
15. User Authentication, Form
Validation, Paging.

M. Udin Harun Al Rasyid, S.Kom, Ph.D
http://lecturer.eepis-its.edu/~udinharun
udinharun@eepis-its.edu

Pemrograman Web

User Authentication

Authentication method
 Basic authentication
 User & password stored in database

Basic authentication

 We hard code the username and password
combination in the login script itself. Suitable
for simple application.

 With this basic authentication method we
store the user information (user id and
password) directly in the script.

 This is only good if the application only have
one user since adding more user means we
must also add the new user id and password
in the script.

Example

Code login.php

 See login.pdf

 Make sure that the form method is set to
post since we certainly don't want to show up
the user id and password in the address bar.

 We simply check if the user id and password
exist in $_POST and check if these two
match the hardcoded user id and password.

 If the submitted user id and password match
these two then we set the value of
$_SESSION['basic_is_logged_in'] to true.
After that we move the application's main
page. In this case it's called main.php

 If the user id and password don't match we
set the error message. This message will be
shown on top of the login form.

Checking if the user is logged in or not

 Since the application main page, main.php,

can only be accessed by those who already
authenticated themselves we must check that
before displaying the page.

 $_SESSION['basic_is_logged_in'] is set or
not.

 If $_SESSION['basic_is_logged_in'] is set
and it's value is true then we can continue
showing the rest of the page.

Code main.php

 <?php
// like i said, we must never forget to start the session
session_start();

// is the one accessing this page logged in or not?
if (!isset($_SESSION['basic_is_logged_in']) || $_SESSION['basic_is_logged_in'] !== true) {
 // not logged in, move to login page
 header('Location: login.php');
 exit;
}

?>
<html>
<head>
<title>Main User Page</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>

<body>
<p>This is the main application page. You are free to play around here since you
 are an autenthicated user :-) </p>
<p> </p>
<p>Logout </p>
</body>
</html>

The Logout Script

 check if $_SESSION['basic_is_logged_in'] is

already set or not and check whether it's
value is true. Using this information we can
build the logout script to simply unset this
session or set the session value to false.

Code logout.php

 ?php
// i will keep yelling this
// DON'T FORGET TO START THE SESSION !!!
session_start();

// if the user is logged in, unset the session
if (isset($_SESSION['basic_is_logged_in'])) {
 unset($_SESSION['basic_is_logged_in']);
}

// now that the user is logged out,
// go to login page
header('Location: login.php');
?>

Login Using Database

 Buat database user  tbl_auth_user
CREATE TABLE `tbl_auth_user` (
 `user_id` varchar(10) NOT NULL default '',
 `user_password` varchar(32) NOT NULL default '',
 PRIMARY KEY (`user_id`)
);

Contoh script di file PDF

 Session-login.pdf

Form Validation

 Whenever you make a form you should not
leave it alone without any form validation.
Why?

 Because there is no guarantee that the input
is correct and processing incorrect input
values can make your application give
unpredictable result.

 You can validate the form input on two
places, client side and server side.

 Client side form validation usually done with
javascript.

 Client side validation makes your web
application respond 'faster' while server side
form validation with PHP can act as a
backup just in case the user switch off
javascript support on her browser.

 And since different browsers can behave
differently there is always a possibility that
the browser didn't execute the javascript
code as you intended.

Some things you need to check :

 empty values
 numbers only
 input length
 email address

Example : contact form

Source Code Contact Form Validation

 See formvalidation.doc

This contact form requires four input :

 sender name
 sender email
 message subject
 message body

 First let's focus on the client side validation.
On the "Send Message" button I put this
javascript code : onClick="return
checkForm();", which is triggered when you
click on it.

 Clicking the button will run the function
checkForm().

 Every input is checked to see whether they
are valid input.

 When an invalid input is found the function
returns false so the form is not submitted

 When you insert valid input the function will
return true and the form is submitted.

 To access the value of the name input box
we use cname.value.

 The name values is trimmed to remove extra
spaces from the beginning and end of the
name.

 If you do not enter your name or only entering
spaces then an alert box will pop up.

 Using cname.focus() the cursor will be placed
to the name input box and then checkForm()
return false which cancel the form submit.

 The code above uses trim() function.
 This is not a built in javascript function.
 Anyway it's not a big deal because we can

just make our own trim() function.
 The solution here uses regular expression

to replace any spaces in the beginning and
end of a string with blank string.

So in english the search replace function
above can be read as :
 "Replace one or more whitespace character

from the beginning or ending of a string with
blank character"

As for the email input, we need to double
check it.
 First, check if the email is entered and

second check if the input is in a valid email
format.

 For the second check well use isEmail()
function.

 This function also uses regular expression.

A valid email format can be described as :

 [a string consisting of alphanumeric
characters, underscores, dots or dash] @ ([
a valid domain name] DOT [a valid TLD])
OR [a valid IP adress]

 In case you're wondering TLD means Top
Level Domain such as com, net, org, biz, etc.

 Finally, if all input are considered valid
checkForm() returns true and the form will be
submitted.

 This will set the $_POST['send'] variable and
now we start validating the input on the
server side using PHP.

Validating using PHP

 The PHP validation is doing the same thing
as the javascript validation.

 It check each value to see if it's empty and if
it is we consider that as an error. We also
recheck the validity of the email address.

 When we find an error we set the value of
$errmsg.

 We will print this value so the user can fix the
error.

 If everything is okay the value of $errmsg will
be blank. So we continue processing the
input.

 After finishing all that boring job of validating
the input we finally come to the last, and the
most important step, sending the message
using the mail() function.

 The first parameter we pass to the mail()
function is the receiver's email address.

 The second is the email subject.
 The third is the message itself and the fourth

is an additional headers.

Paging

 Paging means showing your query result in
multiple pages instead of just put them all in
one long page

 Imagine waiting for five minutes just to load a
search page that shows 1000 result.

 By splitting the result in multiple pages you
can save download time plus you don't have
much scrolling to do.

 To show the result of a query in several
pages first you need to know how many
rows you have and how many rows per
page you want to show. For example if I have
295 rows and I show 30 rows per page that
mean I'll have ten pages (rounded up).

Example

 a table named randoms that store 295
random numbers. Each page shows 20
numbers.

 When paging.php is called for the first time
the value of $_GET['page'] is not set. This
caused $pageNum value to remain 1 and the
query is :
SELECT val FROM randoms LIMIT 0, 20

 which returns the first 20 values from the
table. But when paging.php is called like this

 http://localhost/paging/paging.php?page=4
the value of $pageNum becomes 4 and the
query will be :
SELECT val FROM randoms LIMIT 60, 20

 After showing the values we need to print the
links to show any pages we like. But first we
have to count the number of pages. This is
achieved by dividing the number of total rows
by the number of rows to show per page :
$maxPage = ceil($numrows/$rowsPerPage);

 The mathematical function ceil() is used to
round up the value of
$numrows/$rowsPerPage.

 In this case the value of total rows $numrows
is 295 and $rowsPerPage is 20 so the result
of the division is 14.75 and by using ceil() we
get $maxPage = 15

 Now that we know how many pages we have
we make a loop to print the link.

 Each link will look something like this:
5

FINISH

	15. User Authentication, Form Validation, Paging.
	User Authentication
	Basic authentication
	Example
	Code login.php
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Checking if the user is logged in or not�
	Slide Number 10
	Code main.php
	The Logout Script�
	Code logout.php
	Login Using Database
	Contoh script di file PDF
	Form Validation
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Some things you need to check :
	Example : contact form
	Source Code Contact Form Validation
	This contact form requires four input :
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	So in english the search replace function above can be read as :
	As for the email input, we need to double check it.
	A valid email format can be described as :
	Slide Number 34
	Validating using PHP
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Paging
	Slide Number 42
	Example
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	FINISH

