
PEMROGRAMAN LANJUT

SOLID: ISP dan DIP

Oleh

Tri Hadiah Muliawati

Politeknik Elektronika Negeri Surabaya

2021



Review



Mc Call Software Quality Metric



Open Close Principle

• Originated by Bertrand Meyer, 1988

• Software entities should be open for extension, but closed for 
modification

• A good software architecture would reduce the amount of changed 
code to the barest minimum. Ideally, zero. 



Open Close Principle

• It is implemented using abstraction

By using abstraction, Client class is not 
tightly coupled with Server class. 
Thus, if there is a new requirement to 
add another type of Server, developer 
can create new class as long as it 
implements Client Interface.



Open Close Principle

If there is new requirement to add another type of shape (i.e.: 
Triangle, Trapezium, Pentagon, Diamond, etc.), developer should 
modify drawShape() in GraphicEditor. It is a violation of OCP.



Open Close Principle

If there is new requirement to add another type of shape (i.e.: 
Triangle, Trapezium, Pentagon, Diamond, etc.), developer can 
easily create a new class which is an extension of Shape class. It is 
an implementation of OCP.



Open Close Principle

• Making a flexible design involves additional time and effort spent for 
it and it introduce new level of abstraction increasing the complexity 
of the code. So this principle should be applied in those area which 
are most likely to be changed.

• We can adapt “Fool Me Once” to keep loading our software with 
needless complexity. Thus, we initially write our code expecting it not 
to change. When change occurs, we implement the abstractions that 
protect us from future changes of that kind.



Liskov Substitution Principle

• Originated by Barbara Liskov, 1988

• Subtypes must be substitutable for their base types.

• We must make sure that the new derived classes just extend without 
replacing the functionality of old classes. Otherwise the new classes 
can produce undesired effects when they are used in existing 
program modules.



Liskov Substitution Principle

• If for each object O1 of type S, 
there is an object O2 of type T. 
Such that for all programs P 
defined in terms of the T, the 
behavior of P is unchanged when 
O1 is substituted for O2 when S 
is a subtype of T.



Liskov Substitution Principle

The behavior of drawShape() is unchanged when object 
of class Shape is substituted by object of class Rectangle 
or class Circle 



Liskov Substitution Principle

• Billing class has a method named 
calcFee(), which is called by the 
Billing application. 

• There are two “subtypes” of 
License: PersonalLicense and 
BusinessLicense. They use 
different algorithms to calculate 
the license fee.

• This design conforms to the LSP 
because the behavior of the 
Billing application does not 
depend, in any way, on which of 
the two subtypes it uses. Both of 
the subtypes are substitutable 
for the License type 



Liskov Substitution Principle

• In this example, Square is 
not a proper subtype of 
Rectangle because the 
height and width of the 
Rectangle are independently 
mutable; in contrast, the 
height and width of the 
Square must change 
together.



End of Review



Principles of OO Design

• Single Responsibility Principle

• Open Close Principle

• Liskov Substitution Principle

• Interface Segregation Principle

• Dependency Inversion Principle



Interface Segregation Principle



Interface Segregation Principle

• It is harmful to depend on modules that contain more than you need.

• Clients should not be forced to depend on method that they do not 
use.

• Instead of one fat interface many small interfaces are preferred based 
on groups of methods, each one serving one submodule.



Interface Segregation Principle

• Assume that User1 uses only op1, 
User2 uses only op2, and User3 uses 
only op3.

• If OPS is a class written in a language 
like Java, the source code of User1 will 
inadvertently depend on op2 and op3, 
even though it doesn’t call them. 

• This dependence means that a change 
to the source code of op2 in OPS will 
force User1 to be recompiled and 
redeployed, even though nothing that 
it cared about has actually changed.



Interface Segregation Principle

Each user only depends on 
interface that it needs. 



Interface Segregation Principle

• An architect working on a system, S, wants to include a certain framework, F, into 
the system. Now suppose that the authors of F have bound it to a particular 
database, D. So S depends on F. which depends on D.

• Suppose that D contains features that F does not use and, therefore, that S does 
not care about. Changes to those features within D may well force the 
redeployment of F and, therefore, the redeployment of S. Even worse, a failure of 
one of the features within D may cause failures in F and S.



Interface Segregation Principle

Changes of Requirement:
Some robots came in the company they work as well, 
but they don't eat so they don't need a launch break.

Robot class shouldn’t directly implements IWorker
interface. Since it doesn’t need lunch break. If Robot 
class implements IWorker, it violates ISP.



Interface Segregation Principle

IWorker interface is segregated into IFeedable and 
IWorkable. It is an implementation of ISP.



Dependency Inversion Principle



Dependency Inversion Principle

• The most flexible systems are those in which source code dependencies refer 
only to abstractions, not to concretions.

• Abstraction (Interfaces) are less volatile than concretions (implementations).

• High-level modules should not depend on low-level modules. Both should 
depend on abstractions.

• Abstractions should not depend on details. Details should depend on 
abstractions.

• It is the volatile concrete elements of our system that we want to avoid 
depending on. Those are the modules that we are actively developing, and that 
are undergoing frequent change.



Dependency Inversion Principle

Changes of Requirement:
We need to add a new module (SuperWorker) to our application to model the changes in the 
company structure determined by the employment of new specialized workers. If Manager 
class depends on Worker class, we have to change Manager class.



Dependency Inversion Principle

If Manager class depends on IWorker interface, it is easier to accommodate changes of 
requirement (add SuperWorker class) without changing Manager class. As long as SuperWorker
class implements Iworker interface.



Dependency Inversion Principle

• Recommended coding practices:
• Don’t refer to volatile concrete classes.

• Don’t derive from volatile concrete classes

• Don’t override concrete functions

• Never mention the name of anything concrete and volatile.

• DIP violations cannot be entirely removed, but they can be gathered into a small 
number of concrete components and kept separate from the rest of the system.



Dependency Inversion Principle

• The curved is an architectural 
boundary which separates the 
abstract from the concrete. 

• All source code dependencies 
cross that curved line pointing 
toward the abstract side.

• Flow of control crosses the 
curved line in the opposite 
direction of the source code 
dependencies. The source code 
dependencies are inverted 
against the flow of control Abstract Factory



References

• Martin, Robert C. Agile Software Development, Principles, Patterns, and Practices. 
Pearson. Pearson. 2002

• Martin, Robert C. Clean Architecture: A Craftsman's Guide to Software Structure 
and Design. Pearson. 2017.

• https://www.oodesign.com/interface-segregation-principle.html

• https://www.oodesign.com/dependency-inversion-principle.html




