
PEMROGRAMAN LANJUT

SOLID: OCP dan LSP

Oleh

Tri Hadiah Muliawati

Politeknik Elektronika Negeri Surabaya

2021

Review

Mc Call Software Quality Metric

Cost/LOC is increasing per iteration

Symptoms of Poor Design – Designs Smells

1. Rigidity – hard to change
The system is hard to change because every change forces many other changes to other parts
of the system

2. Fragility – easy to break
Changes cause the system to break in places that have no conceptual relationship to the part
that was changed

3. Immobility – hard to reuse
It is hard to disentangle the system into components that can be reused in other systems

4. Viscosity – hard to do the right thing
Doing the things right is harder than doing the things wrong

5. Needless Complexity – overdesign
The design contains infrastructure that adds no direct benefit

6. Needless Repetition – mouse abuse
The design contains repeating structures that could be unified under a single abstraction

7. Opacity – disorganized expression
It is hard to read and understand. It does not express its intent well

Case Study

• Aim:
Program to copy characters from keyboard to printer

Initial Code

Case Study

• 1st change of requirements:
Copy program should be able to read from printer and paper tape
reader

RdPt() read from paper tape reader
RdKbd() read from keyboard
ptFlag flag to check whether input is paper tape reader

Case Study

• 2st change of requirements:
Copy program should be able to output to paper tape punch

The structure of program is beginning to topple.
Any more changes to the input device will certainly force developer to completely restructure while-loop conditional.

WrtPrt() output is sent to printer
WrtPunch() output is sent to paper tape punch
punchFlag flag to check whether output is sent to paper tape punch

Requirements always change

We (developers) live in the world of changing requirements, and our
job is to make sure that our software can survive those changes.

-Robert C. Martin-

Case Study
Instead of simply changing the code to accommodate
the first change of requirements (Copy program
should be able to read from printer and paper tape
reader), developers can improve the design as well.

Therefore, the design can be more resilient towards
similar changes in the future (additional type of
reader used).

Principles of OO Design

• Single Responsibility Principle

• Open Close Principle

• Liskov Substitution Principle

• Interface Segregation Principle

• Dependency Inversion Principle

Principles of OO Design

• Those principles are not applied directly in up-front design. Rather,
they are applied from iteration to iteration in an attempt to keep the
code, and the design it embodies, clean.

• They don’t apply principles when there are no smells. It is a mistake
to unconditionally conform to a principle just because it’s a principle.

• Principles are not perfume to be liberally scattered all over the
system. Over conformance to the principles leads to the design smell
of needless complexity.

Single Responsibility Principle (SRP)

• A module should have only one reason to change. It doesn’t mean
that every module should do just one thing.

• If a module has more than on responsibility, then the responsibilities
become coupled. Changes to one responsibility may impair or inhibit
the ability of the module to meet the others.

Case Study: Email

• IEmail interface and Email class have
2 responsibilities (reasons to
change):

1. The use of the class in some email
protocols such as pop3 or imap. If
other protocols must be supported
the objects should be serialized in
another manner and code should
be added to support new
protocols.

2. Even if content is a string maybe
we want in the future to support
HTML or other formats.

Case Study: Email

• If we keep only one class, each
change for a responsibility might
affect the other one:

1. Adding a new protocol will create
the need to add code for parsing
and serializing the content for each
type of field.

2. Adding a new content type (like
html) make us to add code for each
protocol implemented.

Case Study: Email

• Having only one responsibility for
each class give us a more flexible
design:

1. adding a new protocol causes
changes only in the Email class.

2. adding a new type of content
supported causes changes only in
Content class.

End of Review

Principles of OO Design

• Single Responsibility Principle

• Open Close Principle

• Liskov Substitution Principle

• Interface Segregation Principle

• Dependency Inversion Principle

Open Close Principle

Open Close Principle

• Originated by Bertrand Meyer, 1988

• Software entities should be open for extension, but closed for
modification

• A good software architecture would reduce the amount of changed
code to the barest minimum. Ideally, zero.

Open Close Principle

• It is implemented using abstraction

By using abstraction, Client class is not
tightly coupled with Server class.
Thus, if there is a new requirement to
add another type of Server, developer
can create new class as long as it
implements Client Interface.

Open Close Principle

If there is new requirement to add another type of shape (i.e.:
Triangle, Trapezium, Pentagon, Diamond, etc.), developer should
modify drawShape() in GraphicEditor. It is a violation of OCP.

Open Close Principle

If there is new requirement to add another type of shape (i.e.:
Triangle, Trapezium, Pentagon, Diamond, etc.), developer can
easily create a new class which is an extension of Shape class. It is
an implementation of OCP.

Open Close Principle

• Making a flexible design involves additional time and effort spent for
it and it introduce new level of abstraction increasing the complexity
of the code. So this principle should be applied in those area which
are most likely to be changed.

• We can adapt “Fool Me Once” to keep loading our software with
needless complexity. Thus, we initially write our code expecting it not
to change. When change occurs, we implement the abstractions that
protect us from future changes of that kind.

Liskov Substitution Principle

Liskov Substitution Principle

• Originated by Barbara Liskov, 1988

• Subtypes must be substitutable for their base types.

• We must make sure that the new derived classes just extend without
replacing the functionality of old classes. Otherwise the new classes
can produce undesired effects when they are used in existing
program modules.

Liskov Substitution Principle

• If for each object O1 of type S,
there is an object O2 of type T.
Such that for all programs P
defined in terms of the T, the
behavior of P is unchanged when
O1 is substituted for O2 when S
is a subtype of T.

Liskov Substitution Principle

The behavior of drawShape() is unchanged when object
of class Shape is substituted by object of class Rectangle
or class Circle

Liskov Substitution Principle

• Billing class has a method named
calcFee(), which is called by the
Billing application.

• There are two “subtypes” of
License: PersonalLicense and
BusinessLicense. They use
different algorithms to calculate
the license fee.

• This design conforms to the LSP
because the behavior of the
Billing application does not
depend, in any way, on which of
the two subtypes it uses. Both of
the subtypes are substitutable
for the License type

Liskov Substitution Principle

• In this example, Square is
not a proper subtype of
Rectangle because the
height and width of the
Rectangle are independently
mutable; in contrast, the
height and width of the
Square must change
together.

References

• Martin, Robert C. Agile Software Development, Principles, Patterns, and Practices.
Pearson. Pearson. 2002

• Martin, Robert C. Clean Architecture: A Craftsman's Guide to Software Structure
and Design. Pearson. 2017.

• https://www.oodesign.com/open-close-principle.html

• https://www.oodesign.com/liskov-s-substitution-principle.html

