
PEMROGRAMAN LANJUT

SOLID: Single Responsibility Principle (SRP)

Oleh

Tri Hadiah Muliawati

Politeknik Elektronika Negeri Surabaya

2021



Review



Mc Call Software Quality Metric



Design by Contract (DbC)

• This principle views the relationship between a server and its clients as a formal 
agreement, expressing each party’s rights and obligations

• Methods should specify their pre- and post-conditions: what must be true before 
and what must be true after their execution, respectively.

• The client should do whatever is necessary to ensure it will meet the pre-
conditions.

• Java: iContract, AssertMate, JASS, C4J, Cofoja, Annotated-contracts



Design by Contract: iContract



Design by Contract: iContract

Executed without using iContract

Executed using iContract



Defensive Programming

• Defensive Programming is based on the idea that every program module is solely 
responsible for itself.

• Defensive programming encourages each procedure to defend itself against 
errors.

• Assume that your program will be called with incorrect inputs, i.e.: files that are 
supposed to be open may be closed, that files that are supposed to be closed 
may be open, and so forth.



Defensive Programming

Checking pre-condition



Common Closure Principle



Common Closure Principle

• If the code in an application must change, you would rather that all of the 
changes occur in one component, rather than being distributed across many 
components

• If two classes are so tightly bound, that they always change together, then they 
belong in the same component.

• By following this principle each time we need to change our software the 
minimum number of components will be affected.



Common Closure Principle

First Scenario

First Scenario:
There is a fee each time a booking 
amendment happens

• Booking Amendment needs to 
have the logic which calculates 
the total fee based on the details 
of each amendment.

• Booking Amendment Documents 
must reflect the incurred fee.

• Booking registry needs to store 
the calculated fee in its records.



Common Closure Principle

Second Scenario

Second Scenario:
There is a promotion code for 
booking.

• Booking Creation: Needs to be 
able calculate the discounted fee 
if there is a promotion code.

• Booking Creation Documents 
must show the discount when we 
are creating a booking.

• Booking registry needs to store 
the promotion code whenever the 
operation is booking creation and 
includes a promotion code.



Common Closure Principle

Revised Design (after applying 
Common Closure Principle)

• Move the classes which change at 
the same time and with the same 
reason to the same component.

• Move the Booking Amendment 
Document and Booking Amendment 
Record classes into the Booking 
Amendment to accommodate first 
scenario.

Revised Design



Common Closure Principle

Final Design (after applying Common 
Closure Principle)

• Move the classes which change at 
the same time and with the same 
reason to the same component.

• Move the Booking Creation 
Document and Booking Creation 
Record classes into the Booking 
Creation to accommodate second 
scenario.

Final Design



End of Review



Cost/LOC is increasing per iteration



What stimulates software to rot

• There are changes of requirement over time which may not be 
anticipated in the initial design

• Often, these changes need to be made quickly, or may be made by 
developers who are not familiar with the original design philosophy.

• Even though, the change to design works, it somehow violates the 
original design.



Symptoms of Poor Design – Designs Smells

1. Rigidity – hard to change
The system is hard to change because every change forces many other changes to other parts 
of the system

2. Fragility – easy to break
Changes cause the system to break in places that have no conceptual relationship to the part 
that was changed

3. Immobility – hard to reuse
It is hard to disentangle the system into components that can be reused in other systems

4. Viscosity – hard to do the right thing
Doing the things right is harder than doing the things wrong

5. Needless Complexity – overdesign 
The design contains infrastructure that adds no direct benefit 

6. Needless Repetition – mouse abuse
The design contains repeating structures that could be unified under a single abstraction

7. Opacity – disorganized expression
It is hard to read and understand. It does not express its intent well



Case Study

• Aim:
Program to copy characters from keyboard to printer

Initial Code



Case Study

• 1st change of requirements:
Copy program should be able to read from printer and paper tape 
reader

RdPt()  read from paper tape reader
RdKbd()  read from keyboard
ptFlag flag to check whether input is paper tape reader



Case Study

• 2st change of requirements:
Copy program should be able to output to paper tape punch

The structure of program is beginning to topple. 
Any more changes to the input device will certainly force developer to completely restructure while-loop conditional.

WrtPrt()  output is sent to printer
WrtPunch()  output is sent to paper tape punch
punchFlag flag to check whether output is sent to paper tape punch



Requirements always change 

We (developers) live in the world of changing requirements, and our 
job is to make sure that our software can survive those changes.

-Robert C. Martin-



Case Study
Instead of simply changing the code to accommodate 
the first change of requirements (Copy program 
should be able to read from printer and paper tape 
reader), developers can improve the design as well. 

Therefore, the design can be more resilient towards 
similar changes in the future (additional type of 
reader used).



Principles of OO Design

• Single Responsibility Principle

• Open Close Principle

• Liskov Substitution Principle

• Interface Segregation Principle

• Dependency Inversion Principle



Principles of OO Design

• Those principles are not applied directly in up-front design. Rather, 
they are applied from iteration to iteration in an attempt to keep the 
code, and the design it embodies, clean.

• They don’t apply principles when there are no smells. It is a mistake 
to unconditionally conform to a principle just because it’s a principle.

• Principles are not perfume to be liberally scattered all over the 
system. Over conformance to the principles leads to the design smell 
of needless complexity.



Single Responsibility Principle



Single Responsibility Principle (SRP)

• A module should have only one reason to change. It doesn’t mean 
that every module should do just one thing.

• If a module has more than on responsibility, then the responsibilities 
become coupled. Changes to one responsibility may impair or inhibit 
the ability of the module to meet the others.



Case Study: Rectangle

• ComputationalGeometryApplication uses Rectangle to help it with mathematics of 
geometric shapes. It doesn’t need to draw Rectangle on screen.

• GraphicalApplication definitely draws Rectangle on screen, but doesn’t always do 
computational geometry.



Case Study: Rectangle

• Rectangle has two responsibilities, i.e.:

1. Provide mathematical model of the geometry of rectangle

2. Render rectangle on a GUI



Case Study: Rectangle

• Problems:

1. GUI should be included in ComputationGeometryApplication, because Rectangle 
uses GUI. It will consume link and compile time as well as memory footprint.

2. If GraphicalApplication causes Rectangle to change for a reason, that change may 
force us to rebuild, retest, and redeploy the ComputationalGeometryApplication. If 
not, the application may break in unpredictable ways.



Case Study: Rectangle



Case Study: Email

• IEmail interface and Email class have 
2 responsibilities (reasons to 
change): 

1. The use of the class in some email 
protocols such as pop3 or imap. If 
other protocols must be supported 
the objects should be serialized in 
another manner and code should 
be added to support new 
protocols. 

2. Even if content is a string maybe 
we want in the future to support 
HTML or other formats.



Case Study: Email

• If we keep only one class, each 
change for a responsibility might 
affect the other one:

1. Adding a new protocol will create 
the need to add code for parsing 
and serializing the content for each 
type of field.

2. Adding a new content type (like 
html) make us to add code for each 
protocol implemented.



Case Study: Email

• Having only one responsibility for 
each class give us a more flexible 
design:

1. adding a new protocol causes 
changes only in the Email class.

2. adding a new type of content 
supported causes changes only in 
Content class.



Case Study: Employee

• This class violates the SRP because those 
three methods are responsible to three very 
different actors.

• The calculatePay() method is specified 
by the accounting department, which
reports to the CFO.

• The reportHours() method is specified 
and used by the human resources
department, which reports to the COO.

• The save() method is specified by the 
database administrators (DBAs), who report 
to the CTO. 



Case Study: Employee

• By putting the source code for these three methods into a single Employee class, the 
developers have coupled each of these actors to the others. 

• This coupling can cause the actions of the CFO’s team to affect something that the 
COO’s team depends on.



Case Study: Employee

• Suppose that the calculatePay() function and the reportHours() function 
share a common algorithm for calculating non-overtime hours. Suppose that algorithm is 
put into a function named regularHours()

• CFO’s team decides that the way non-overtime hours are calculated needs to be 
tweaked. In contrast, the COO’s team in HR does not want that particular tweak because 
they use non-overtime hours for a different purpose. 



Case Study: Employee

• The most obvious way to solve the 
problem is to separate the data 
from the functions. 

• The three classes share access to 
EmployeeData, which is a 
simple data structure with no 
methods.

• Each class holds only the 
source code necessary for its 
particular function. 

• The three classes are not 
allowed to know about each 
other. Thus any accidental 
duplication is avoided.

The downside of this solution is that the developers now 
have three classes that they have to instantiate and 
track.



Case Study: Employee

The EmployeeFacade contains very little code. It is responsible for instantiating and 
delegating to the classes with the functions



References

• Martin, Robert C. Agile Software Development, Principles, Patterns, and Practices. 
Pearson. Pearson. 2002

• Martin, Robert C. Clean Architecture: A Craftsman's Guide to Software Structure 
and Design. Pearson. 2017.

• https://www.oodesign.com/single-responsibility-principle.html




