
PEMROGRAMAN LANJUT

Programming Principles - 2

Oleh Politeknik Elektronika Negeri Surabaya

2021

Review

Mc Call Software Quality Metric

DRY (Don’t Repeat Yourself)

• Find and eliminate duplication wherever you can.

Smells:
• Duplicate code
• Data clumps

DRY (Don’t Repeat Yourself)

DRY (Don’t Repeat Yourself)

DRY (Don’t Repeat Yourself)

• The most obvious form
of duplication is when
you have clumps of
identical code in
various places.

DRY (Don’t Repeat Yourself)

DRY (Don’t Repeat Yourself)

• A more subtle form is the switch/case or if/else chain that appears again and again
in various modules, always testing for the same set of conditions. These should be
replaced with polymorphism.

DRY (Don’t Repeat Yourself)

• Still more subtle are the modules that have similar algorithms, but that don’t
share similar lines of code. This is still duplication.

DRY (Don’t Repeat Yourself)

KISS (Keep It Simple St**id)

• Keep the code simple and clear, making it easy to understand.

KISS (Keep It Simple St**id)

KISS (Keep It Simple St**id)

Arrow Anti-pattern

KISS (Keep It Simple St**id)

KISS (Keep It Simple St**id)

YAGNI (You Are Not Gonna Need It)

• Remove any parts
which are
unnecessary.

• Do not implement
something until it is
needed.

Smells:
• Dead code
• Speculative generality
• Lazy class
• Comments

YAGNI (You Are Not Gonna Need It)

Addendum
• DRY implementation in case study which is discussed at the

previous meeting.

End of Review

Design by Contract (DbC)

• The goal of DbC is to enable programmers to "build software specification into
the software source code and make it self-checking at runtime." This is achieved
through the introduction of "contracts" — executable code contained within the
source that specifies obligations for classes, methods, and their callers.

• This principle views the relationship between a server and its clients as a formal
agreement, expressing each party’s rights and obligations

• Methods should specify their pre- and post-conditions: what must be true before
and what must be true after their execution, respectively.

• The server promises to do its job (defined by post-condition) as long as the clients
uses the server correctly (defined by pre-condition)

Design by Contract (DbC)

• If a method has specified some pre-condition then the failure of that condition is
the responsibility of the client of the method.

• The client should do whatever is necessary to ensure it will meet the pre-
conditions.

• Java: iContract, AssertMate, JASS, C4J, Cofoja, Annotated-contracts

Design by Contract: iContract

Design by Contract: iContract

Executed without using iContract

Executed using iContract

Defensive Programming

• Defensive Programming is based on the idea that every program module is solely
responsible for itself.

• Defensive programming encourages each procedure to defend itself against
errors.

• Assume that your program will be called with incorrect inputs, i.e.: files that are
supposed to be open may be closed, that files that are supposed to be closed
may be open, and so forth.

Defensive Programming

Checking pre-condition

Common Closure Principle

Common Closure Principle

Common Closure Principle

• If the code in an application must change, you would rather that all of the
changes occur in one component, rather than being distributed across many
components

• If two classes are so tightly bound, that they always change together, then they
belong in the same component.

• By following this principle each time we need to change our software the
minimum number of components will be affected.

Common Closure Principle

Initial Design

• Booking Creation: Calculates fees,
does some validations and checks for
room availability.

• Booking Amendment: Checks for
availability and does validations.
There is no fee for changing a
booking, so it does not need fee
calculations.

Initial Design

Common Closure Principle

Initial Design

• Booking Documents: Creates booking
creation and amendment document,
converts to Pdf, as well as saves to
blob.

• Booking Registry: Creates registry
records required for booking creation
and booking amendment. It also has a
class which helps with the retrieval of
those records;

Initial Design

Common Closure Principle

• Booking creation and Booking
Amendment components initiate
the call to the other two
components to create
documents and store the
required records.

Interaction among components

Common Closure Principle

First Scenario

First Scenario:
There is a fee each time a booking
amendment happens

• Booking Amendment needs to
have the logic which calculates
the total fee based on the details
of each amendment.

• Booking Amendment Documents
must reflect the incurred fee.

• Booking registry needs to store
the calculated fee in its records.

Common Closure Principle

Second Scenario

Second Scenario:
There is a promotion code for
booking.

• Booking Creation: Needs to be
able calculate the discounted fee
if there is a promotion code.

• Booking Creation Documents
must show the discount when we
are creating a booking.

• Booking registry needs to store
the promotion code whenever the
operation is booking creation and
includes a promotion code.

Common Closure Principle

Revised Design (after applying
Common Closure Principle)

• Move the classes which change at
the same time and with the same
reason to the same component.

• Move the Booking Amendment
Document and Booking Amendment
Record classes into the Booking
Amendment to accommodate first
scenario.

Revised Design

Common Closure Principle

Final Design (after applying Common
Closure Principle)

• Move the classes which change at
the same time and with the same
reason to the same component.

• Move the Booking Creation
Document and Booking Creation
Record classes into the Booking
Creation to accommodate second
scenario.

Final Design

Common Closure Principle

Common Closure Principle
First Option

Common Closure Principle

Second Option

References

• Rasyid Institute. Modul Workshop Clean Code. 2019.

• Bertrand Meyer. Object-Oriented Software Construction (2nd Edition). Pearson College
Div, 2000.

• Martin, Robert C. Clean Architecture: A Craftsman's Guide to Software Structure and
Design. Pearson. 2017.

• https://www.leadingagile.com/2018/05/design-by-contract-part-one/

• https://www.leadingagile.com/2018/05/design-by-contract-part-two/

• https://www.infoworld.com/article/2074956/icontract-design-by-contract-in-
java.html?page=2

• https://betterprogramming.pub/refactoring-guard-clauses-2ceeaa1a9da

• https://medium.com/dev-genius/common-closure-principle-the-story-of-an-evolving-
architecture-6919b452c8db

https://www.leadingagile.com/2018/05/design-by-contract-part-one/
https://www.leadingagile.com/2018/05/design-by-contract-part-two/
https://www.infoworld.com/article/2074956/icontract-design-by-contract-in-java.html?page=2
https://betterprogramming.pub/refactoring-guard-clauses-2ceeaa1a9da
https://medium.com/dev-genius/common-closure-principle-the-story-of-an-evolving-architecture-6919b452c8db
https://medium.com/dev-genius/common-closure-principle-the-story-of-an-evolving-architecture-6919b452c8db
https://medium.com/dev-genius/common-closure-principle-the-story-of-an-evolving-architecture-6919b452c8db

