PEMROGRAMAN LANJUT

Large Class and God Class

Oleh
Tri Hadiah Muliawati

“ Politeknik Elektronika Negeri Surabaya

=
=

Politeknik Elektronika Negeri Surabaya
Departemen Teknik Informatika dan Komputer

Politeknik Elektronika Negeri Surabaya

Large Class

* Classes usually start small. But
over time, they get bloated as
the program grows.

ne=<
P

* It belongs to bloater category =
in code smell.

* Large class is not defined by
length of LoC (Line of Code),
but its violation of SRP (Single g
Responsibility Principle).

Departemen Teknik Informatika & Komputer

Politeknik Elektronika Negeri Surabaya

Large Class: Refactoring

* Extract Class: if part of the behavior of the large class can be spun off
into a separate component.

e Extract Subclass: if part of the behavior of the large class can be
implemented in different ways or is used in rare cases.

* Extract Interface: if it’s necessary to have a list of the operations and
behaviors that the client can use.

* If a large class is responsible for the graphical interface, you may try
to move some of its data and behavior to a separate domain object.

Departemen Teknik Informatika & Komputer

1 | using System;

2 | using System.Collections.Generic;

3 | using System.Ling;

4

5 | namespace Trivia

6 | {

7 public class Game

8 {

9 private readonly List<string>» _players = new List<string>();

1@

11 private readonly int[] _places = new int[6];

12 private readonly int[] _purses = new int[6];

13

14 private readonly bool[] _inPenaltyBox = new bool[6];

15

16 private readonly LinkedList<string> _popQuestions = new LinkedList<string>();
17 private readonly LinkedList<string> _scienceQuestions = new LinkedList<string>();
18 private readonly LinkedList<string> _sportsQuestions = new LinkedList<string>();
19 private readonly LinkedList<string> _rockQuestions = new LinkedList<string>();
20
21 private int _currentPlayer;
22 private bool _isGettingOutOfPenaltyBox;
23
24 public Game()
25 {
26 for (var 1 = @; 1 < 50; i++)
27 {
28 _popQuestions.AddLast("Pop Question " + i);
29 _scienceQuestions.AddLast(("Science Question " + 1));
30 _sportsQuestions.AddLast(("Sports Question " + 1));
31 _rockQuestions.AddLast(CreateRockQuestion(i));
:: } } Sumber: https://github.com/emilybache/trivia
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

public string CreateRockQuestion(int index)

{

return "Rock Question " + index;

¥
public bool IsPlayable()
{

return (HowManyPlayers() »>= 2);

¥
public bool Add(string playerName)
{

_players.Add(playerName);
_places[HowManyPlayers()] = ©;
_purses[HowManyPlayers()] = ©;
_inPenaltyBox[HowManyPlayers()] = false;

Console.WritelLine(playerName + " was added");

Console.WritelLine("They are player number ™

return true;

¥
public int HowManyPlayers()
{

return _players.Count;

¥

+ _players.Count);

Sumber: https://github.com/emilybache/trivia

62 public void Roll(int roll)
63 {
64 Console.WriteLine(players|[currentPlayer] + " is the current player™);
65 Console.WriteLine("They have rolled a " + roll);
66
67 it (_inPenaltyBox|[currentPlayer])
68 {
69 if (roll % 2 1= 0)
70 {
71 _isGettingOutofPenaltyBox = true;
72
73 Console.WriteLine(_players[currentPlayer] + " is getting out of the penalty box");
74 _places[currentPlayer] = places[currentPlayer] + roll;
75 if (_places[currentPlayer] > 11) places|[currentPlayer] = places|[currentPlayer] - 12;
76
77 Console.WriteLine(players|[currentPlayer]
78 + "'s new location is "
79 + places|[currentPlayer]);
80 Console.WriteLine("The category is " + CurrentCategory());
81 AskQuestion();
82 }
83 else
84 {
85 Console.Writeline(players[currentPlayer] + " is not getting out of the penalty box™);
86 _isGettingOutofPenaltyBox = false;
87 }
88 }
89 else
90 {
91 _places[_currentPlayer] = places[_currentPlayer] + roll;
92 if (_places[_currentPlayer] > 11) places|[currentPlayer] = places|[currentPlayer] - 12;
93
94 Console.WriteLine(players|[_ currentPlayer]
a5 + "'s new location is "
96 + places[currentPlayer]);
97 Console.WriteLine("The category is " + CurrentCategory());
98 AskQuestion();
99 ¥ Sumber: https://github.com/emilybache/trivia
100 }
101

102 private void AskQuestion()

103 {

104 it (CurrentcCategory() == "Pop")

105 {

106 Console.WritelLine(popQuestions.First());

107 _popQuestions.RemoveFirst();

108 }

109 it (CurrentcCategory() == "Science")

110 {

111 Console.WritelLine(scienceQuestions.First());
112 _scienceQuestions.RemoveFirst();

113 }

114 it (CurrentCategory() == "Sports")

115 {

116 Console.WritelLine(sportsQuestions.First());
117 _sportsQuestions.RemoveFirst();

118 }

119 it (CurrentcCategory() == "Rock")

120 {

121 Console.WritelLine(rockQuestions.First());

122 _rockQuestions.RemoveFirst();

123 }

124 }

125

126 private string CurrentCategory()

127 {

128 it (_places|_currentPlayer] == @) return "Pop";

129 it (_places| currentPlayer] == 4) return "Pop";

130 it (_places| currentPlayer] == 8) return "Pop";

131 it (_places|_currentPlayer] == 1) return "Science";
132 it (_places|_currentPlayer] == 5) return "Science";
EE] it (_places|_currentPlayer] == 9) return "Science";
134 it (_places|_currentPlayer] == 2) return "Sports";
I EL) it (_places|_currentPlayer] == 6) return "Sports";
136 it (_places| currentPlayer] == 18) return "Sports”;
E; . return "Rock™; Sumber: https://github.com/emilybache/trivia
139

140 public bool WasCorrectlyAnswered()

141 {

142 it (_inPenaltyBox[currentPlayer])

143 {

144 it (_isGettingoutOfPenaltyBox)

145 {

146 Cconsole.WritelLine("Answer was correct!!11");
147 _purses|[currentPlayer]++;

148 Console.WritelLine(players[currentPlayer]
149 + " now has "

150 + purses|[currentPlayer]

151 + " Gold Coins.");

152

153 var winner = DidPlayerWin();

154 _currentPlayer++;

155 if (_currentPlayer == players.Count) currentPlayer = 8;
156

157 return winner;

158 }

159 else

160 {

161 _currentPlayer++;

162 if (_currentPlayer == players.Count) currentPlayer = 8;
163 return true;

164 }

165 }

166 else

167 {

168 Console.WriteLine("Answer was corrent!!!1"});

169 _purses| currentPlayer]++;

170 Console.Writeline(players|[currentPlayer]

171 + " now has "

172 + purses[currentPlayer]

173 + " Gold Coins.");

174

175 var winner = DidPlayerWin();

176 _currentPlayer++;

177 it (_currentPlayer == players.Count) currentPlayer = @;
178 Sumber: https://github.com/emilybache/trivia
179 return winner;

1880 }

183 public bool WrongAnswer()

184 {

185 Console.WriteLine("Question was incorrectly answered"”);
186 Console.WriteLine(players[currentPlayer] + " was sent to the penalty box");
187 _inPenaltyBox|[currentPlayer] = true;

188

189 _currentPlayer++;

190 it (_currentPlayer == players.Count) currentPlayer = 0;
191 return true;

192)

193

194

195 private bool DidPlayerWin()

196 {

197 return !'(_purses[currentPlayer] == 6);

198 1

199 1

200

201 | }

202

Sumber: https://github.com/emilybache/trivia

Politeknik Elektronika Negeri Surabaya

Initial Class Diagram of Game Class

| Game A |

s Game class has 3 responsibilities, i.e.:
e 1. Handling game logic.

:: IR i 2. Generating and managing trivia

:: ecer questions.

o epueston: 3. Managing players.

"ii"a _rockCuestions
"ii'a _scienceCuestions

®. _sportsQuestions We need to split the responsibilities by

4 Methods

Ada extracting new classes, i.e.: Players class

AzkCuestion

CreateRockQuestion and Questions class. Thus Game class can

CurrentCategory

DicPlayertin focus on handling game logic only.

Game

& &

& & &

HowManyPlayers
IsPlayable
Roll

WasCorrectlyAnswered

eeeaeaa

WrongAnswer

Politeknik Elektronika Negeri Surabaya

Extract Questions Class:

1. Select Related Methods and Fields

Game
cas Select any fields and methods which are
e related to question, i.e.:
Ca _inPenaltyBax 1. Field:
., _isGettingCutCfPenaltyBox
L aces H
i _popQuestions
EE boessen] _rockQuestions
or encecueions _scienceQuestions
'i"a _sportsCuesticns .
= _sportsQuestions
3 :f: —— Getting the next question 2. Method:
ettt CreateRockQuestion

5 CurrentCategory

@, _DidPlayeriVin _)
Generating questions
@ HowManyPlayers

@ IsPlayable

@ Roll

@ WasCorrectlyAnswered
@ WrongAnswer

Politeknik Elektronika Negeri Surabaya

Extract Questions Class:
2. Create Questions Class

Questions

Questions questions = Questions();

e Create Questions class to accommodate fields and methods related to generate
and manage trivia questions.

 On the other hand, create Questions property in Game class, thus Game class
can still access methods and fields of Questions class.

Politeknik Elektronika Negeri Surabaya

Extract Questions Class:
3. Move Related Fields to Questions Class

Questions
LinkedList< __popQuestions = LinkedList«< >();

LinkedList«
LinkedList<

_sportsQuestions = LinkedList< >();
_rockQuestions = LinkedList< >()s

b
LinkedList< » scienceQuestions = LinkedList< >();

b

p

e Move popQuestions, scienceQuestions, sportsQuestions, and
_rockQuestions to Questions class.

e Set their access modifier to public for the time being, thus Game class can still
access them. Even though, we have not created any mutator and accessor
methods for the aforementioned fields.

Politeknik Elektronika Negeri Surabaya

Extract Questions Class:
3. Move Related Fields to Questions Class

Game()

Update code in Game class thus it can
(O ver = e eses) access _popQuestions,

L
_popQuestions.AddLast("Pop Question " + 1); - - -
_scienceQuestions.AddLast(("Science Question " + 1)); _SCIenceQueStlonsl _SportSQueStlonS,
_sportsQuestions.AddLast(("Sports Question " + 1));

r‘ockQuestions.AddLast(Cr‘eateRockQﬁestion(i)); and _rOCkQueSt|OnS through QueSt|OnS
property.

1=0; 1< 50; i++)

questions. popQuestions.AddLast("Pop Question " + 1);
questions. scienceQuestions.AddLast(("Science Question " + 1));
questions. sportsQuestions.AddLast(("Sports Question " + 1));
questions. rockQuestions.AddLast(CreateRockQuestion(1));

Politeknik Elektronika Negeri Surabaya

Extract Questions Class:
3. Move Related Fields to Questions Class

AskQuestion() private void AskQuestion()

{

(CurrentCategory() == "Pop”) if (CurrentCategory() == "Pop")
{

Console.WriteLine(popQuestions.First());

] i Console.Writeline(questions. popQuestions.First());
_popQuestions.RemoveFirst();

questions. popQuestions.RemoveFirst();

}
if (CurrentCategory() ==

{

(CurrentCategory() == "Science™)

'‘Science")
Console.WriteLine(scienceQuestions.First());

i - ; Console.WritelLine(questions. scienceQuestions.First());
_scienceQuestions.RemoveFirst();

questions. scienceQuestions.RemoveFirst();
}
if (CurrentCategory() == "Sports™)
{

(CurrentCategory() == "Sports")

Console.WriteLine(sportsQuestions.First());

- X Console.WritelLine(questions. sportsQuestions.First());
_sportsQuestions.RemoveFirst(); -

questions. sportsQuestions.RemoveFirst();

}
if (CurrentCategory() == "Rock™)

{

(CurrentCategory() == "Rock™)

Console.WriteLine(rockQuestions.First());

: . Console.Writeline(questions. rockQuestions.First());
_rockQuestions.RemoveFirst(); —

questions. rockQuestions.RemoveFirst();

Politeknik Elektronika Negeri Surabaya

Extract Questions Class:

4. Move CreateRockQuestion()

i=0; 1< 50; i++)

questions. popQuestions.AddLast("Pop Question " + 1);
questions. scienceQuestions.AddLast(("Science Question " + 1));
questions._ sportsQuestions.AddLast(("Sports Question " + 1));

questions._rockQuestions.AddLast(CreateRockQuestion(i));

CreateRockQuestion(index)

"Rock Question " + index;

e At first, it seems obvious that we have to move CreateRockQuestion() into
Questions class. But, after a deeper look, we can see that the method serves no
additional purpose other than generate Rock Question.

 Onthe other hand, generating of Pop Question, Science Question, and Sports
Question are handled directly by Game constructor.

Politeknik Elektronika Negeri Surabaya

Extract Questions Class:
4. Move CreateRockQuestion()

i=0; 1< 50; i++)
questions. popQuestions.AddLast("Pop Questio
questions. scienceQuestions.AddLast(("Se

questions._ sportsQuestions.AddLast(("Sports Question " + 1));
questions._rockQuestions.AddLast(CreateRockQuestion(i));

CreateRockQuestion(index)

"Rock Question " + index;

1=0; 1< 50; i++)

questions._popQuestions.AddLast("Pop Question " + 1i);
questions._scienceQuestions.AddLast(("5 e Question " + 1));
questions. sportsQuestions.AddLast(("Sports Question " + 1));
questions._rockQuestions.AddLast("Rock Question " + 1i);

Thus, instead of moving
CreateRockQuestion() into
Questions class, we can inline
the method into Game
constructor.

Politeknik Elektronika Negeri Surabaya

Extract Questions Class:
5. Move Question Generator Logic into Questions Class

GenerateQuestions()
(1=0; 1< 50; 1++)

_popQuestions.AddLast("Pop Question " + 1);

_sclenceQuestions.AddLast(("Science Question " + 1));
_sportsQuestions.AddLast(("Sports Question " + 1));
_rockQuestions.AddLast("Rock Question " + 1);

* Previously, Game constructor is responsible for generating Pop, Science, Sports
and Rock Question. But we cannot move constructor into other class. Thus, we
move the logic instead.

* |n order to accommodate question generator logic, we create a new method in
Questions class, which is GenerateQuestions(). And move guestion generator
logic into it.

Politeknik Elektronika Negeri Surabaya

Extract Questions Class:
5. Move Question Generator Logic into Questions Class

Update code in Game

| _ constructor thus it can still
quest%ons._poPQuestlons:AddLast(”Pﬂp ?? i :)3) . .
questions. scienceQuestions.AddLast((, F 1) H generate questlon through

questions. sportsQuestions.AddLast(("Sport

questions. rockQuestions.AddLast("Rock Question " i); QU EStiO ns p ro pe rty.

i=0; 1< 50; i++)

Game ()

questions.GenerateQuestions();

Politeknik Elektronika Negeri Surabaya

Extract Questions Class:
6. Move Get Next Question Logic into Questions Class

private void AskQuestion()

I
L

if (CurrentCategory() == "Pop")

{
Console.WritelLine(questions. popQuestions.First());
questions. popQuestions.RemoveFirst();

1

¥

if (CurrentCategory() == "Science”)

{
Console.WritelLine(questions. scienceQuestions.First());
questions. scienceQuestions.RemoveFirst();

1

¥

if (CurrentCategory() == "Sports”)

{

Console.WritelLine(questions. sportsQuestions.First());
questions. sportsQuestions.RemoveFirst();

1

]

if (CurrentCategory() == "Rock™)

{
Console.WritelLine(questions. rockQuestions.First());
questions. rockQuestions.RemoveFirst();

Previously, AskQuestion() in Game
class is responsible for:

Getting next question from question
list (_popQuestions,
_scienceQuestions,
_sportsQuestions, and
_rockQuestions) according to
CurrentCategory,

Writing it on console, and

Removing it from the list.

We will move get next question logic
into Questions class, thus
AskQuestion() is only responsible for
writing next question to console.

Politeknik Elektronika Negeri Surabaya

Extract Questions Class:

6. Move Get Next Question Logic into Questions Class

GetNextQuestion(Category)
(Category == "Pop")
question = popQuestions.First();
_popQuestions.RemoveFirst();

question;

{Category == "Science")

question = scienceQuestions.First();

_scienceQuestions.RemoveFirst();
question;

(Category == "Sports")

question = sportsQuestions.First();

_sportsQuestions.RemoveFirst();
question;

(Category == "Rock")
p
1

question = rockQuestions.First();
_rockQuestions.RemoveFirst();
question;

Create a new method in Questions class,
which is GetNextQuestion() to
accommodate get next question logic
from Game class.

It will return next question back to Game
class, since AskQuestion() will write it on
console.

Politeknik Elektronika Negeri Surabaya

Extract Questions Class:
6. Move Get Next Question Logic into Questions Class

private void AskQuestion()

1

if (CurrentCategory() == "Pop")
{
Console.WriteLine(questions. popQuestions.First());

questions. popQuestions.RemoveFirst();

1
I

if (CurrentCategory() == "Science™)

{
Console.WritelLine(questions. scienceQuestions.First());
questions. scienceQuestions.RemoveFirst();

T

I

if (CurrentCategory() == "Sports™)

{
Console.Writeline(questions. sportsQuestions.First());
questions. sportsQuestions.RemoveFirst();

1

J

if (CurrentCategory() == "Rock™)

{
Console.WritelLine(questions. rockQuestions.First());
questions. rockQuestions.RemoveFirst();

Update code in AskQuestion() thus it can
still get next question through Questions
property.

AskQuestion()

question = questions.GetNextQuestion(CurrentCategory());
Console.Writeline(question);

Politeknik Elektronika Negeri Surabaya

Extract Questions Class:
7. Set access modifier of fields in Questions Class into Private

Questions

LinkedListx<
LinkedListx<
LinkedListx«
LinkedListx«

> _popQuestions = LinkedList< >();

> scienceQuestions = LinkedList< >();
> sportsQuestions = LinkedList< >();
> _rockQuestions = LinkedList< >();

Questions

LinkedListx<
LinkedList«
LinkedListx<
LinkedList«

_popQuestions = LinkedList< >();
_scienceQuestions = LinkedList< >();
_sportsQuestions = LinkedList< >();
_rockQuestions = LinkedList< >();

>
>
>
>

In order to keep unwanted access of fields in Questions class, we will set their access
modifier into private. Thus, Game class can only access them through method in
Questions class, i.e.:

 GenerateQuestions()

 GetNextQuestion()

Politeknik Elektronika Negeri Surabaya

Extract Players Class:

1. Select Related Methods and Fields

— Select any fields and methods which are related to player,
4 Fields l.e.:

@ _currentPlayer 1 Fleld .
| '

5 _1sGettingQutCfPenaltyBox _|nPena|tYBOX

_places

_players
4 Methods _purses
Add Player 2. Method:

@, AskQuestion

!:a CurrentCategory r— Get Place Add()
=z CidPlayerWin

® Game HowManyPlayers()

[E! HDWMEH}’F”E}'EFS! Updﬂte PIEICE
2 |sPlayakle

Update Purse
Put in Penalty Box

 WasLorrectlyAnswered

® WrongAnswer

Politeknik Elektronika Negeri Surabaya

Extract Players Class:
2. Create Players Class

Trivia Game () Players players;
Game(Players players)
Players questions.GenerateQuestions();

.players = players;
questions.GenerateQuestions();

* Create Players class to accommodate fields and methods related to manage
players.

* On the other hand, create Players property in Game class, thus Game class can
still access methods and fields of Players class.

 Game constructor will inject Players object into Players property. Thus we do not
need to create new Players each time we start a game.

Politeknik Elektronika Negeri Surabaya

Extract Players Class:
3. Move Related Fields into Players Class

List< > _players =
[1 _places [6]; . .
Move Fields into

[] _purses [6];
[1 _inPenaltyBox = Players class

Players

List< > playerNames =
[1] places = [6];

[] purses = [6];
[1 inPenaltyBox = [6];

Previously Game class has _players field to store list of players’ names. Since we
have Players class, we can move it to Players class instead. To make it more

meaningful, we will rename it into _playerNames.

Politeknik Elektronika Negeri Surabaya

Extract Players Class:
3. Move Related Fields into Players Class

Add(playerName)

Update code in Game class
_players.Add(playerName); thus it can access
_places[HowManyPlayers()] ;

_purses[HowManyPlayers()] ; _pIayerNameS, _places,
_purses, _inPenaltyBox

through Players property.

_inPenaltyBox[HowManyPlayers()] = >

Console.WriteLine(playerName + " was added”);
Console.WriteLine("They are player number " + players.Count);
3

HowManyPlayers()

: : players.Count;
public bool Add(string playerName) -

{
players._playerNames.Add(playerName);
players._places[HowManyPlayers()] = ©;
players._ purses[HowManyPlayers()] = ©;
1 ._inPenaltyBox[HowManyPl = false; : ¥
players._inPenaltyBox[HowManyPlayers()] public int HowManyPlayers()
Console.WriteLine(playerName + " was added"); {
Console.WriteLine("They are player number " + HowManyPlayers()); return players._ playerNames.Count;
return true;

Politeknik Elektronika Negeri Surabaya

Extract Players Class:
3. Move Related Fields into Players Class

CurrentcCategory()

Update code in Game class thus it can access
currentPlayer] 9) “Pop™;
currentplayer] — 4) "Pop” _playerNames, _places, _purses,

(_places[_currentPlayer] 8) "Pop";

(_places[_currentPlayer] == 1) Sauanl _inPenaltyBox through Players property.

(_places|[_

[_

E_
(_places[:currentplayer] — G

[_

[_

[_

[_

(_places

(_places[_currentPlayer] 9)

(_places[_currentPlayer] 2) ;

(_places[_currentPlayer] == 6) "Sports”;

(_places[_currentPlayer] 10) "Sports”;
"Rock";

private string CurrentCategory()

{
if (players._places[_currentPlayer] return "
if (players._places[_currentPlayer] 4) return "P
if (players._places[_currentPlayer] 3) return "P

if (players._places[_currentPlayer] return
if (players._places[_currentPlayer] return
if (players._places[_currentPlayer] return
if (players._places[_currentPlayer] return
if (players._places[_currentPlayer] return
if (players._places[_currentPlayer] 18) return "Sports";
return "Rock";

m m M

W wwwmwm

Politeknik Elektronika Negeri Surabaya

Extract Players Class:
4. Move HowManyPlayers() into Players Class

public bool Add(string playerName)

{

players._playerNames.Add(playerName);
players._places[HowManyPlayers()] = ©;
players._purses[HowManyPlayers()] = ©;
players.

Console.WriteLine(playerName + "

Console.WriteLine("They are playe r " + HowManyPlayers())

return true;

public bool Add(string playerName)
{

players. playerNames.Add(playerName);
players._places[players.HowManyPlayers()]
players. purses[players.HowManyPlayers()] 0;

players._inPenaltyBox[players.HowManyPlayers()] = false;

Console.WriteLine(playerName + "
Console.WriteLine("They are play
return true;

.

EJ

Update code in Game class
thus it can access
HowManyPlayers() through
Players property.

IsPlayable()

(HowManyPlayers() »>= 2);

public bool IsPlayable()
{

return (players.HowManyPlayers() >= Z)ﬂ

}

Politeknik Elektronika Negeri Surabaya

Extract Players Class:
4. Move HowManyPlayers() into Players Class

i’“blic IRt HostanyeLayens() Remove Players property from

FEturT . players. playeriiames . Cont: HowManyPlayers(), because it is moved into
} Players class. Thus HowManyPlayers() can
access _playerNames directly.

public int HowManyPlayers()
{

return _playerNames.Count;

}

Politeknik Elektronika Negeri Surabaya

Extract Players Class:
4. Move HowManyPlayers() into Players Class

public bool Add(string playerName)

{

players._playerNames.Add(playerName);
players._places[HowManyPlayers()] = ©;
players._purses[HowManyPlayers()] = ©;
players.

Console.WriteLine(playerName + "

Console.WriteLine("They are playe r " + HowManyPlayers())

return true;

public bool Add(string playerName)
{

players. playerNames.Add(playerName);
players._places[players.HowManyPlayers()]
players. purses[players.HowManyPlayers()] 0;

players._inPenaltyBox[players.HowManyPlayers()] = false;

Console.WriteLine(playerName + "
Console.WriteLine("They are play
return true;

.

EJ

Update code in Game class
thus it can access
HowManyPlayers() through
Players property.

IsPlayable()

(HowManyPlayers() »>= 2);

public bool IsPlayable()
{

return (players.HowManyPlayers() >= Z)ﬂ

}

Politeknik Elektronika Negeri Surabaya

Extract Players Class:

4. Move Add() into Players Class

public bool Add(string playerName)

{
players._ playerNames.Add(playerName);
players._places[players.HowManyPlayers()] 0;
players._ purses[players.HowManyPlayers()] = ©;
players._inPenaltyBox[players.HowManyPlayers()] = false

Console.WritelLine(playerName + " was ded");
Console.WriteLine("They are player number " + players.HowManyPlayers());
return true;

public bool Add(string playerName)

{
_playerNames.Add(playerName);
_places[HowManyPlayers()] = ©;
_purses[HowManyPlayers()] = 9;
_inPenaltyBox[HowManyPlayers()] = false;

Console. WFlteLlne(playerName + " was
Console.WriteLine("They are player number
return true;

" + HowManyPlayers());

Remove Players property from
Add(), because it is moved
into Players class. Thus Add()
can access _playerNames,
_places, purses,
_inPenaltyBox, and
HowManyPlayers() directly.

Politeknik Elektronika Negeri Surabaya

Extract Players Class:
5. Encapsulate Fields in Players Class

List« > playerNames =
[1] places = [6];
[]1 _purses = [6];

[] inPenaltyBox = [6];

ate readonly List<string> playernames = new List<string>();
ate readonly int[] places = new int[6];

ate readonly int[] purses = new int[6];

ate readonly bool[] _inPenaltyBox = new bool[6];

In order to keep unwanted access of fields in Players class, we will set their access
modifier into private. Thus, we need to create mutator and/or accessor methods for

each field.

Politeknik Elektronika Negeri Surabaya

Extract Players Class:
5. Encapsulate Fields in Players Class

etPlac 1. ber l

ZeiEplrne it player i) GetPlace() is accessor method for
_places[playerNumber]; _places. Whereas AddToPlace() is

AddToPlace(playerNumber, addAmount) mutator method for _p|aCES-

_places[playerNumber] += addAmount;

Update code in Game Class accordingly, thus it can still access fields in Player
Class (_playerNames, places, purses, inPenaltyBox) indirectly through their

accessor and mutator methods.

_places|[currentPlayer] = places[currentPlayer] + roll;
(_places[_currentPlayer] > 11) places|[currentPlayer] = places[currentPlayer] - 12;

players.AddToPlace(currentPlayer, roll);
(players.GetPlace(_ currentPlayer) > 11) players.AddToPlace(currentPlayer, -12);

Politeknik Elektronika Negeri Surabaya

Revised Class Diagram of Game Class

4 Methods

Add
AzkCuestion
CreateRockQuestion

& &

CurrentCategory
DidPlayerWin
Game

@ & &

HowManyPlayers
IsPlayakle

Roll
WasCorrectlyfnswered

eeaacea

WrongAnswer

WasCorrecthyAnswered

0 e &

WrongAnswer

| Game o | Game A ¥, players | Players L
Clazz Class | Clazs
-
4 Fields 4 Fields
¢ tPlay
ﬂ“ -F":ren N EB’H @ _currentPlayer
a _inPenaltyBox @ iGetti
ettingCutCfPenaltyB
@ isGettingOutOfPenaltyBox B~ ng=y EnatyRes) i
@ places 4 Methods ®. questions | Questions ¥
. players @, AskQuestion | Clazs
% _popQuestions @, CurrentCategory -
@, _purses @, DidPlayerWin
®_ rockQuestions Game
g . .
G _SEIEHEEQLIES:tIDHS IsPlayable
"ii'a _sportsCuestions Rall

Politeknik Elektronika Negeri Surabaya

God Class

e God class belongs to Software
Development Anti-pattern and
is known as the blob or
Winnebago.

* |t is characterized by a class
diagram composed of a single
complex controller class
surrounded by simple data
classes.

* The key problem here is that
the majority of the
responsibilities are allocated to

'zz a single class.
@
pPEMNS

Departemen Teknik Informatika & Komputer

Politeknik Elektronika Negeri Surabaya

Main Controller Class Records

+ Data_List_Provider

+ Status
[Images]] + Mode ErrorSet

+ User / ‘
\ + Group
1 -

+ Date_Time
Table2 + ACL

Datal

/

+ Start()
+ Stop()
+ Initialize()

/ + Set_Mode()
Group4 + Login()

+ Set_Status() Figurel
+ Do_This()
+ Do_That()

Users

The Blob contains the majority of the process, and the other objects contain the
data. Architectures with the Blob have separated process from data;

Politeknik Elektronika Negeri Surabaya

God Class: Symptoms

A class with 60 or more attributes and operations usually indicates
the presence of the Blob.

* A disparate collection of unrelated attributes and operations
encapsulated in a single class (Lack of cohesiveness).

* A single controller class with associated simple, data-object classes.

* The single controller class often nearly encapsulates the applications
entire functionality (Absence of object-oriented design).

Departemen Teknik Informatika & Komputer

Politeknik Elektronika Negeri Surabaya

God Class: Exceptions

* The Blob is acceptable when wrapping legacy systemes.

* Legacy system is an old method, technology, computer system, or
application program, "of, relating to, or being a previous or outdated
computer system," yet still in use.

Departemen Teknik Informatika & Komputer

Politeknik Elektronika Negeri Surabaya

God Class

° A GOd ClaSS features d Class uses directly more than a
h Igh com p I eXIty’ |OW tew attributes of other classes
inner-class cohesion, (wro-rew)
and heavy access to data
Of fo relgn Classes' Functional complexity of the

. . class is very high AND GodClass
Egﬂ;’t\/(\/\ﬁlll\gﬂhg)eqrzﬁtthOd [WMC = VERY HIGH)]
Class Cohesion (TCC),
and Access TO Forelgn Class cohesion is low
Data (ATFD) can be used P Tcc<onETHRD]

“e_ to detect God Class

Departemen Teknik Informatika & Komputer

Politeknik Elektronika Negeri Surabaya

God Class

* Weighted Method Count (WMC(C)) is the sum of the cyclomatic
complexity of all methods in C.

* Tight Class Cohesion (TCC(C)) is the relative number of directly
connected methods in C. Two methods are directly connected if they
access the same instance variables of C.

e Access To Foreign Data (ATFD(C)) is the number of attributes of
foreign classes accessed directly by class C or via accessor methods

Departemen Teknik Informatika & Komputer

Politeknik Elektronika Negeri Surabaya

Code Smell vs Anti-pattern

* An anti-pattern is just like a
pattern, except that instead of a
solution it gives something that il ookl an ttrcive
looks superficially like a solution e
but isn't one - Andrew Koenig

* The same solution can be a good
pattern in some contexts and an
antipattern in others. The value
of a solution depends on the

...but further on leads you into

' < ConteXt that you use |t. a maze filled with monsters
®

pPENS

Departemen Teknik Informatika & Komputer

Politeknik Elektronika Negeri Surabaya

Code Smell vs Anti-pattern

e Software anti-pattern can be
categorized into 3 aspects, which
An antipattern is a solution that

[]
a re . initially looks like an attractive
road lined with flowers...

1. Software Development

AntiPatterns
2. Software Architecture
AntiPatterns
3. Software Project Management _
= AntiPatterns = mase flled with morsters

Departemen Teknik Informatika & Komputer

Politeknik Elektronika Negeri Surabaya

Code Smell vs Anti-pattern

* A smell is by definition something that's quick to spot.

* Smells don't always indicate a problem. You have to look deeper to
see if there is an underlying problem there.

* Smells aren't inherently bad on their own - they are often an indicator
of a problem rather than the problem themselves.

Departemen Teknik Informatika & Komputer

Politeknik Elektronika Negeri Surabaya

Automated Code Smell Detection Tools

* Checkstyle

* Jdeodorant

* PMD

* InFusion

* iPlasma

e StenchBlossom
* JSpIRIT

Departemen Teknik Informatika & Komputer

Politeknik Elektronika Negeri Surabaya

References

* Martin, Robert C. Clean Code: A Handbook of Agile Software Craftsmanship.
Pearson. 2008.

* Fowler, Martin. Refactoring: Improving the Design of Existing Code. Addison-
Wesley Professional, 1999.

* Lanza, M., & Marinescu, R. Object-Oriented Metrics in Practice. Springer. 2006.
* https://refactoring.guru/
* https://sourcemaking.com/
* https://martinfowler.com/bliki/AntiPattern.html

< °* https://martinfowler.com/bliki/CodeSmell.html
 https://makolyte.com/refactoring-the-large-class-code-smell/

Departemen Teknik Informatika & Komputer

bridge to t uture

http://www.eepis-its.edu

