
PEMROGRAMAN LANJUT

Large Class and God Class

Oleh

Tri Hadiah Muliawati

Politeknik Elektronika Negeri Surabaya

2021

Large Class

• Classes usually start small. But
over time, they get bloated as
the program grows.

• It belongs to bloater category
in code smell.

• Large class is not defined by
length of LoC (Line of Code),
but its violation of SRP (Single
Responsibility Principle).

Large Class: Refactoring

• Extract Class: if part of the behavior of the large class can be spun off
into a separate component.

• Extract Subclass: if part of the behavior of the large class can be
implemented in different ways or is used in rare cases.

• Extract Interface: if it’s necessary to have a list of the operations and
behaviors that the client can use.

• If a large class is responsible for the graphical interface, you may try
to move some of its data and behavior to a separate domain object.

Sumber: https://github.com/emilybache/trivia

Sumber: https://github.com/emilybache/trivia

Sumber: https://github.com/emilybache/trivia

Sumber: https://github.com/emilybache/trivia

Sumber: https://github.com/emilybache/trivia

Sumber: https://github.com/emilybache/trivia

Game class has 3 responsibilities, i.e.:
1. Handling game logic.
2. Generating and managing trivia

questions.
3. Managing players.

We need to split the responsibilities by
extracting new classes, i.e.: Players class
and Questions class. Thus Game class can
focus on handling game logic only.

Initial Class Diagram of Game Class

Select any fields and methods which are
related to question, i.e.:
1. Field:

_popQuestions
_rockQuestions
_scienceQuestions
_sportsQuestions

2. Method:
CreateRockQuestion

Extract Questions Class:

1. Select Related Methods and Fields

• Create Questions class to accommodate fields and methods related to generate
and manage trivia questions.

• On the other hand, create Questions property in Game class, thus Game class
can still access methods and fields of Questions class.

Extract Questions Class:

2. Create Questions Class

• Move _popQuestions, _scienceQuestions, _sportsQuestions, and
_rockQuestions to Questions class.

• Set their access modifier to public for the time being, thus Game class can still
access them. Even though, we have not created any mutator and accessor
methods for the aforementioned fields.

Extract Questions Class:

3. Move Related Fields to Questions Class

Update code in Game class thus it can
access _popQuestions,
_scienceQuestions, _sportsQuestions,
and _rockQuestions through Questions
property.

Extract Questions Class:

3. Move Related Fields to Questions Class

Extract Questions Class:

3. Move Related Fields to Questions Class

• At first, it seems obvious that we have to move CreateRockQuestion() into
Questions class. But, after a deeper look, we can see that the method serves no
additional purpose other than generate Rock Question.

• On the other hand, generating of Pop Question, Science Question, and Sports
Question are handled directly by Game constructor.

Extract Questions Class:

4. Move CreateRockQuestion()

Thus, instead of moving
CreateRockQuestion() into
Questions class, we can inline
the method into Game
constructor.

Extract Questions Class:

4. Move CreateRockQuestion()

• Previously, Game constructor is responsible for generating Pop, Science, Sports
and Rock Question. But we cannot move constructor into other class. Thus, we
move the logic instead.

• In order to accommodate question generator logic, we create a new method in
Questions class, which is GenerateQuestions(). And move question generator
logic into it.

Extract Questions Class:

5. Move Question Generator Logic into Questions Class

Update code in Game
constructor thus it can still
generate question through
Questions property.

Extract Questions Class:

5. Move Question Generator Logic into Questions Class

• Previously, AskQuestion() in Game
class is responsible for:

1. Getting next question from question
list (_popQuestions,
_scienceQuestions,
_sportsQuestions, and
_rockQuestions) according to
CurrentCategory,

2. Writing it on console, and
3. Removing it from the list.
• We will move get next question logic

into Questions class, thus
AskQuestion() is only responsible for
writing next question to console.

Extract Questions Class:

6. Move Get Next Question Logic into Questions Class

• Create a new method in Questions class,
which is GetNextQuestion() to
accommodate get next question logic
from Game class.

• It will return next question back to Game
class, since AskQuestion() will write it on
console.

Extract Questions Class:

6. Move Get Next Question Logic into Questions Class

Update code in AskQuestion() thus it can
still get next question through Questions
property.

Extract Questions Class:

6. Move Get Next Question Logic into Questions Class

In order to keep unwanted access of fields in Questions class, we will set their access
modifier into private. Thus, Game class can only access them through method in
Questions class, i.e.:
• GenerateQuestions()
• GetNextQuestion()

Extract Questions Class:
7. Set access modifier of fields in Questions Class into Private

Select any fields and methods which are related to player,
i.e.:
1. Field:

_inPenaltyBox
_places
_players
_purses

2. Method:
Add()
HowManyPlayers()

Extract Players Class:

1. Select Related Methods and Fields

• Create Players class to accommodate fields and methods related to manage
players.

• On the other hand, create Players property in Game class, thus Game class can
still access methods and fields of Players class.

• Game constructor will inject Players object into Players property. Thus we do not
need to create new Players each time we start a game.

Extract Players Class:

2. Create Players Class

Extract Players Class:

3. Move Related Fields into Players Class

Previously Game class has _players field to store list of players’ names. Since we
have Players class, we can move it to Players class instead. To make it more
meaningful, we will rename it into _playerNames.

Move Fields into
Players class

Update code in Game class
thus it can access
_playerNames, _places,
_purses, _inPenaltyBox
through Players property.

Extract Players Class:

3. Move Related Fields into Players Class

Update code in Game class thus it can access
_playerNames, _places, _purses,
_inPenaltyBox through Players property.

Extract Players Class:

3. Move Related Fields into Players Class

Update code in Game class
thus it can access
HowManyPlayers() through
Players property.

Extract Players Class:

4. Move HowManyPlayers() into Players Class

Remove Players property from
HowManyPlayers(), because it is moved into
Players class. Thus HowManyPlayers() can
access _playerNames directly.

Extract Players Class:

4. Move HowManyPlayers() into Players Class

Update code in Game class
thus it can access
HowManyPlayers() through
Players property.

Extract Players Class:

4. Move HowManyPlayers() into Players Class

Extract Players Class:

4. Move Add() into Players Class
Remove Players property from
Add(), because it is moved
into Players class. Thus Add()
can access _playerNames,
_places, _purses,
_inPenaltyBox, and
HowManyPlayers() directly.

Extract Players Class:

5. Encapsulate Fields in Players Class

In order to keep unwanted access of fields in Players class, we will set their access
modifier into private. Thus, we need to create mutator and/or accessor methods for
each field.

Extract Players Class:

5. Encapsulate Fields in Players Class

GetPlace() is accessor method for
_places. Whereas AddToPlace() is
mutator method for _places.

Update code in Game Class accordingly, thus it can still access fields in Player
Class (_playerNames, _places, _purses, _inPenaltyBox) indirectly through their
accessor and mutator methods.

Revised Class Diagram of Game Class

God Class

• God class belongs to Software
Development Anti-pattern and
is known as the blob or
Winnebago.

• It is characterized by a class
diagram composed of a single
complex controller class
surrounded by simple data
classes.

• The key problem here is that
the majority of the
responsibilities are allocated to
a single class.

The Blob contains the majority of the process, and the other objects contain the
data. Architectures with the Blob have separated process from data;

God Class: Symptoms

• A class with 60 or more attributes and operations usually indicates
the presence of the Blob.

• A disparate collection of unrelated attributes and operations
encapsulated in a single class (Lack of cohesiveness).

• A single controller class with associated simple, data-object classes.

• The single controller class often nearly encapsulates the applications
entire functionality (Absence of object-oriented design).

God Class: Exceptions

• The Blob is acceptable when wrapping legacy systems.

• Legacy system is an old method, technology, computer system, or
application program, "of, relating to, or being a previous or outdated
computer system," yet still in use.

God Class

• A God Class features a
high complexity, low
inner-class cohesion,
and heavy access to data
of foreign classes.

• Thus, Weighted Method
Count (WMC), Tight
Class Cohesion (TCC),
and Access To Foreign
Data (ATFD) can be used
to detect God Class

God Class

• Weighted Method Count (WMC(C)) is the sum of the cyclomatic
complexity of all methods in C.

• Tight Class Cohesion (TCC(C)) is the relative number of directly
connected methods in C. Two methods are directly connected if they
access the same instance variables of C.

• Access To Foreign Data (ATFD(C)) is the number of attributes of
foreign classes accessed directly by class C or via accessor methods

Code Smell vs Anti-pattern

• An anti-pattern is just like a
pattern, except that instead of a
solution it gives something that
looks superficially like a solution
but isn't one - Andrew Koenig

• The same solution can be a good
pattern in some contexts and an
antipattern in others. The value
of a solution depends on the
context that you use it.

Code Smell vs Anti-pattern

• Software anti-pattern can be
categorized into 3 aspects, which
are:

1. Software Development
AntiPatterns

2. Software Architecture
AntiPatterns

3. Software Project Management
AntiPatterns

Code Smell vs Anti-pattern

• A smell is by definition something that's quick to spot.

• Smells don't always indicate a problem. You have to look deeper to
see if there is an underlying problem there.

• Smells aren't inherently bad on their own - they are often an indicator
of a problem rather than the problem themselves.

Automated Code Smell Detection Tools

• Checkstyle

• Jdeodorant

• PMD

• InFusion

• iPlasma

• StenchBlossom

• JSpIRIT

References

• Martin, Robert C. Clean Code: A Handbook of Agile Software Craftsmanship.
Pearson. 2008.

• Fowler, Martin. Refactoring: Improving the Design of Existing Code. Addison-
Wesley Professional, 1999.

• Lanza, M., & Marinescu, R. Object-Oriented Metrics in Practice. Springer. 2006.

• https://refactoring.guru/

• https://sourcemaking.com/

• https://martinfowler.com/bliki/AntiPattern.html

• https://martinfowler.com/bliki/CodeSmell.html

• https://makolyte.com/refactoring-the-large-class-code-smell/

