
PEMROGRAMAN LANJUT

Code Smells: Bloater

Oleh

Tri Hadiah Muliawati

Politeknik Elektronika Negeri Surabaya

2021

Bloater
Code, methods and classes that have increased to

such gargantuan proportions that they’re hard to work with.

Bloater

• Long Method

• Long Parameter List

• Data Clump

• Primitive Obsession

• Large Class

Long Method

• A method contains too many lines
of code. Generally, any method
longer than ten lines should make
you start asking questions.

• If you feel the need to comment on
something inside a method, you
should take this code and put it in
a new method.

Long Method: Refactoring

• Extract Method: To reduce the length of method body.

• Replace Temp with Query, Introduce Parameter Object, Preserve
Whole Object: If local variables and parameters interfere with
extracting a method.

• Replace Method with Method Object: the local variables in long
method are so intertwined that you can’t apply extract method.

• Conditional operators and loops are a good clue that code can be
moved to a separate method.

The original method (doManagerJob()) consists of
more than 10 Line of Code (LoC)

Long Parameter List

• More than three or four
parameters for a method.

Long Parameter List: Refactoring

• Preserve Whole Object: Instead of passing a group of data received
from another object as parameters, pass the object itself to the
method.

• Introduce Parameter Object: If there are several unrelated data
elements, sometimes you can merge them into a single parameter
object.

• Replace Parameter with Method Call: If some of the arguments are
just results of method calls of another object. Place object in the field
of its own class or passed it as a method parameter.

Parameter seasonDiscount and fees can be
placed inside discountedPrice() method.

We can also move method calls
(getSeasonalDiscount() and getFees())
into discountedPrice()method.

Data Clumps

• Sometimes different parts of the
code contain identical groups of
variables (such as parameters for
connecting to a database).

• These clumps should be turned
into their own classes.

Data Clumps: Refactoring

• Extract Class: If repeating data comprises the fields of a class, move
them to their own class.

• Introduce Parameter Object: If the same data clumps are passed in
the parameters of methods.

• Preserve Whole Object: If some of the data is passed to other
methods, think about passing the entire data object to the method
instead of just individual fields.

Primitive Obsession

• Use of primitives instead of small objects for simple tasks (such as
currency, ranges, special strings for phone numbers, etc.)

• Use of constants for coding information (such as a constant
USER_ADMIN_ROLE = 1 for referring to users with administrator
rights.)

• Use of string constants as field names for use in data arrays.

Primitive Obsession: Refactoring

• Replace Value with Object: If you have a large variety of primitive
fields, it may be possible to logically group some of them into their
own class.

• Introduce Parameter Object or Preserve Whole Object: If the values
of primitive fields are used in method parameters.

• Replace Array with Object: If there are arrays among the variables.

• Replace Type Code with Class, Replace Type Code with Subclasses or
Replace Type Code with State/Strategy: If complicated data is coded
in variables.

customer field has its own behavior and associated
data. Thus, it is better to turn it into class.

Large Class

• Classes usually start small. But over
time, they get bloated as the
program grows.

Large Class: Refactoring

• Extract Class: if part of the behavior of the large class can be spun off
into a separate component.

• Extract Subclass: if part of the behavior of the large class can be
implemented in different ways or is used in rare cases.

• Extract Interface: if it’s necessary to have a list of the operations and
behaviors that the client can use.

• If a large class is responsible for the graphical interface, you may try
to move some of its data and behavior to a separate domain object.

References

• Martin, Robert C. Clean Code: A Handbook of Agile Software Craftsmanship.
Pearson. 2008.

• Fowler, Martin. Refactoring: Improving the Design of Existing Code. Addison-
Wesley Professional, 1999.

• https://refactoring.guru/

• Putra, F. Z. P., 2019. Rancang Bangun Pustaka untuk Refactoring Otomatis
terhadap Long Method Code Smell.

